Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
2.
Eur J Pharmacol ; 967: 176351, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290568

RESUMO

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.


Assuntos
Aminopiridinas , Doxorrubicina , Células Musculares , Sulfonamidas , Animais , Camundongos , Atrofia/induzido quimicamente , Autofagia , Doxorrubicina/efeitos adversos , NADPH Oxidase 2
3.
Toxicol Appl Pharmacol ; 463: 116412, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764612

RESUMO

Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Necroptose , Necrose/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Doxorrubicina/metabolismo , NADPH Oxidases/metabolismo , Proteínas Quinases/metabolismo
4.
Animal ; 16(11): 100653, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228548

RESUMO

Type traits (TTs) can contribute to breeding animals with good economic traits such as production, longevity, fertility, and profitability. Dairy buffaloes are the second largest source of milk supply in the world, and their TTs should be taken into consideration in future dairy buffalo breeding programmes. However, the relationship between TTs and milk production traits in buffalo remains largely unknown. The study aimed to establish an early selection method for buffaloes with desirable milk performance by TTs. Using 1 908 records from 678 buffaloes, the relationship between TTs and milk production traits was analysed and the optimal growth curves of TTs related to milk production traits were constructed. We examined the correlations between 45 TTs (33 body structural, 12 udder and teat morphological traits) and three milk production traits (milk yield (MY), milk fat percentage (MF), and milk protein percentage (MP)). The results showed that the highest correlation was found between MY and udder circumference (r = 0.438), teat length (r = -0.380) or heart girth (r = -0.341). The teat distance and teat circumference exhibited a significant negative correlation with MF and MP. Rump length was the only trait that had a significant positive correlation with milk production traits, suggesting that milk performance could be comprehensively improved by including rump length in the selection procedure. Notably, we found that high milk production traits was obtained from the buffaloes with short teats (<6 cm), small heart girth (<200 cm), large udder circumference (>104 cm), long rump (>39 cm), and small distance between teats. Moreover, an early selection method for buffaloes with excellent milk performance was developed based on the non-linear models. Brody model exhibited the best fitting effect for heart girth and rump length, while the Logistic model displayed the best fitting effect for teat length. Our findings provide theoretical basis for the early selection of buffaloes with desirable milk performance.


Assuntos
Búfalos , Lactação , Feminino , Animais , Búfalos/genética , Leite/metabolismo , Glândulas Mamárias Animais/anatomia & histologia , Proteínas do Leite/análise
5.
J Vet Res ; 66(2): 179-187, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35892111

RESUMO

Introduction: Clinical mastitis (CM) is one of the most common diseases of dairy cows globally, has a complex aetiology and recurs easily. Staphylococcus aureus is a frequently isolated pathogen responsible for bovine mastitis and remains difficult to eradicate. Material and Methods: To characterise the transcriptional profiles of dairy cows infected by S. aureus, we performed an RNA-seq analysis of peripheral blood leukocytes in lactating Chinese Holstein dairy cows with CM and did the same with healthy cows' samples as controls. Results: A total of 4,286 genes were detected in the CM cases infected with S. aureus which were differentially expressed compared to the controls, 3,085 of which were upregulated, the remainder being downregulated. Notably, we observed that some differentially expressed genes (DEGs) had strong protein-protein interaction. Of these, six downregulated DEGs (AKR1C4, PTGS2, HNMT, EPHX2, CMBL, and IDH1) were involved in the metabolic pathway, while eight upregulated DEGs (VWF, GP9, MYLK, GP6, F2RL3, ITGB3, GP5, and PRKG1) were associated with the platelet activation pathway. Conclusion: The transcriptome dataset of CM cases would be a valuable resource for clinical guidance on anti-inflammatory medication and for deeper understanding of the biological processes of CM response to S. aureus infection, and it would enable us to identify specific genes for diagnostic markers and possibly for targeted therapy.

6.
Inorg Chem ; 61(23): 8685-8693, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35639458

RESUMO

Titanium oxo clusters (TOCs) with accurate molecular structures have potential applications in photocatalysis, such as photocatalytic degradation, hydrogen production, and water oxidation. The hydrolytic stability and light absorption ability of TOCs have important impacts on photocatalysis, where the selection of peripheral organic ligands plays a significant role. In this regard, salicylhydroxamic acid (abbreviated as H3L) attracts our attention, acting as a ligand for its multidentate and dye-functional features, which can increase the hydrolytic stability and broaden light absorption for TOCs. Herein, two TOCs were solvothermally synthesized and structurally characterized using H3L, formulated as [Ti8(µ2-O)2(µ3-O)2(OiPr)12(L)4]·2CH3CN (1) and [Ti16(µ2-O)10(µ3-O)4(PhCOO)14(L)6(HL)2]·4CH3CN·2iPrOH (2). Complex 2 was obtained by adding excessive benzoic acid over the reaction system of 1, resulting in enhanced hydrolytic stability via the replacement of all alkoxy ligands by multidentate ligands for protection. Interestingly, for the first time, the "three-in-one" structural building mode with {Ti6} + {Ti4} + {Ti6} by the common subunits in 2 was observed among all reported TOCs. Moreover, complex 2 can strongly absorb visible light reaching up to 700 nm and exhibit obvious activity for the photodegradation of methyl orange.


Assuntos
Benzoatos , Titânio , Ligantes , Salicilamidas , Titânio/química
7.
Front Immunol ; 13: 1088862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36643915

RESUMO

Toll and Toll-like receptors (TLRs) play essential roles in the innate immunity of Drosophila and mammals. Recent studies have revealed the presence of Toll-mediated immune signaling pathways in shrimp. However, the recognition and activation mechanism of Toll signaling pathways in crustaceans remain poorly understood due to the absence of key recognition molecules, such as peptidoglycan recognition proteins. Here, a novel MD2-related lipid-recognition (ML) member named PvML1 was characterized in Penaeus vannamei. We found that PvML1 shared a similar 3D structure with human MD2 that could specifically recognize lipopolysaccharides (LPS) participating in LPS-mediated TLR4 signaling. PvML1 was highly expressed in hemocytes and remarkably upregulated after Vibrio parahemolyticus challenge. Furthermore, the binding and agglutinating assays showed that PvML1 possessed strong binding activities to LPS and its key portion lipid A as well as Vibrio cells, and the binding of PvML1 with bacterial cells led to the agglutination of bacteria, suggesting PvML1 may act as a potential pathogen recognition protein upon interaction with LPS. Besides, coating V. parahemolyticus with recombinant PvML1 promoted bacterial clearance in vivo and increased the survival rate of bacterium-challenged shrimp. This result was further confirmed by RNAi experiments. The knockdown of PvML1 remarkably suppressed the clearance of bacteria in hemolymph and decreased the survival rate of infected shrimp. Meanwhile, the silencing of PvML1 severely impaired the expression of a few antimicrobial peptides (AMPs). These results demonstrated the significant correlation of bacterial clearance mediated by PvML1 with the AMP expression. Interestingly, we found that PvML1 interacted with the extracellular region of PvToll2, which had been previously shown to participate in bacterial clearance by regulating AMP expression. Taken together, the proposed antibacterial model mediated by PvML1 might be described as follows. PvML1 acted as a potential recognition receptor for Gram-negative bacteria by binding to LPS, and then it activated PvToll2-mediated signaling pathway by interacting with PvToll2 to eliminate invading bacteria through producing specific AMPs. This study provided new insights into the recognition and activation mechanism of Toll signaling pathways of invertebrates and the defense functions of ML members.


Assuntos
Infecções Bacterianas , Crustáceos , Vibrio parahaemolyticus , Animais , Humanos , Infecções Bacterianas/veterinária , Crustáceos/imunologia , Crustáceos/microbiologia , Imunidade Inata , Invertebrados , Lipopolissacarídeos , Receptores Toll-Like/metabolismo
8.
Clin Exp Pharmacol Physiol ; 49(1): 60-69, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453856

RESUMO

In cardiac myocytes in vitro, hydrogen peroxide induces autophagic cell death and necroptosis. Oxidative stress, myocyte autophagy and necroptosis coexist in heart failure (HF). In this study, we tested the hypothesis that excessive oxidative stress mediates pathological autophagy and necroptosis in myocytes in pressure overload-induced HF. HF was produced by chronic pressure overload induced by abdominal aortic constriction (AAC) in rats. Rats with AAC or sham operation were randomised to orally receive an antioxidant N-acetylcysteine (NAC) or placebo for 4 weeks. Echocardiography was performed for the assessments of left ventricular (LV) structure and function. AAC rats exhibited decreased LV fractional shortening (FS) at 4 weeks after surgery. NAC treatment attenuated decreased LV FS in AAC rats. In AAC rats, myocardial level of 8-hydroxydeoxyguanosine assessed by immunohistochemical staining, indicative of oxidative stress, was increased, LC3 II protein, a marker of autophagy, Beclin1 protein and Atg4b, Atg5, Atg7 and Atg12 mRNA expression were markedly increased, RIP1, RIP3 and MLKL expression, indicative of necroptosis, was increased, and all of the alterations in AAC rats were prevented by the NAC treatment. NAC treatment also attenuated myocyte cross-sectional area and myocardial fibrosis in AAC rats. In conclusion, NAC treatment prevented the increases in oxidative stress, myocyte autophagy and necroptosis and the decrease in LV systolic function in pressure overload-induced HF. These findings suggest that enhanced oxidative stress mediates pathological autophagy and necroptosis in myocytes, leading to LV systolic dysfunction, and antioxidants may be of value to prevent HF through the inhibition of excessive autophagy and necroptosis.


Assuntos
Autofagia , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Necroptose , Estresse Oxidativo , Acetilcisteína/farmacologia , Animais , Autofagia/efeitos dos fármacos , Pressão Sanguínea , Ecocardiografia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Necroptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda
9.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5137-5143, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738412

RESUMO

Mongolians have a long history of using prescriptions, which can be classified into four stages as follows: the germination and experience accumulation stage before the 13 th century, the theoretical formation stage from the 13 th to 16 th century, the rapid development stage from the 17 th to 20 th century, and the leaping development stage from the mid-20 th century to the present. The prescriptions from the ancient classical or representative medical books have always been used by Mongolian physicians for generations, and they are still in use due to the definite curative effects. In 2008, the Notice on Issuing the Supplementary Provisions to the Registration and Management of Traditional Chinese Medicine(TCM) described that China has attached more importance to the excavation and development of classical prescriptions. As stipulated in the Law of the People's Republic of China on Traditional Chinese Medicine, the classical prescriptions should be those available in ancient TCM classics and still in wide use, with exact curative effects, distinct features, and obvious advantages. This paper expounded the historical formation and development of classical prescriptions in Mongo-lian medicine, introduced the five most influential ancient medical books revealing the formation and development of these classic prescriptions, and traced the origin of such classical prescriptions as Wenguanmu Siwei Decoction, Shouzhangshen Bawei Decoction, Jianghuang Siwei Decoction and summarized the origin, development history and characteristics of classical prescriptions in Mongolian medicine, aiming to provide a reference for their further research and development.


Assuntos
Medicamentos de Ervas Chinesas , Livros , China , Humanos , Medicina Tradicional Chinesa , Medicina Tradicional da Mongólia , Prescrições
10.
J Invertebr Pathol ; 186: 107665, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520799

RESUMO

Penaeus vannamei is the most economically important species of shrimp cultured worldwide. Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that severely affects the growth and development of shrimps. In this study, the transcriptome differences between EHP-infected and uninfected shrimp were investigated through next-generation sequencing. The unigenes were assembled with the reads from all the four libraries. The differentially expressed genes (DEGs) of intestines and hepatopancreas were analyzed. There were 2,884 DEGs in the intestines and 2,096 DEGs in the hepatopancreas. The GO and KEGG enrichment analysis indicated that DEGs were significantly enriched in signaling pathways associated with nutritional energy metabolism and mobilizing autoimmunity. Moreover, the results suggested the downregulation of key genes in energy synthesis pathways contributed greatly to shrimp growth retardation; the upregulation of immune-related genes enhanced the resistance of shrimp against EHP infection. This study provided identified genes and pathways associated with EHP infection revealing the molecular mechanisms of growth retardation.


Assuntos
Enterocytozoon/fisiologia , Penaeidae/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Hepatopâncreas/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Intestinos/parasitologia , Penaeidae/parasitologia
11.
Eur J Pharmacol ; 907: 174260, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34144026

RESUMO

Sphingosine-1-phosphate (S1P)/S1P receptor 1 signaling exerts cardioprotective effects including inhibition of myocyte apoptosis. However, little is known about the effect of S1P treatment on myocyte autophagy after myocardial infarction (MI). In the present study, we tested the hypothesis that S1P induces myocyte autophagy through inhibition of the mammalian target of rapamycin (mTOR), leading to improvement of left ventricular (LV) function after MI. Sprague-Dawley rats underwent MI or sham operation. The animals were randomized to receive S1P (50 µg/kg/day, i.p.) or placebo for one week. H9C2 cardiomyocytes cultured in serum- and glucose-deficient medium were treated with or without S1P for 3 h. MI rats exhibited an increase in LV end-diastolic dimension (EDD) and decreases in LV fractional shortening (FS) and the maximal rate of LV pressure rise (+dP/dt). S1P treatment attenuated the increase in LV EDD and decreases in LV FS and +dP/dt. In the MI placebo group, the LC3 II/I ratio, a marker of autophagy, was increased, and increased further by S1P treatment. S1P also enhanced the autophagy-related proteins Atg4b and Atg5 after MI. Similarly, in cultured cardiomyocytes, autophagy was increased under glucose and serum deprivation, and increased further by S1P treatment. The effect of S1P on myocyte autophagy was associated with mTOR inhibition after MI or in cultured cardiomyocytes under glucose and serum deprivation. S1P treatment prevents LV remodeling, enhances myocyte autophagy and inhibits mTOR activity after MI. These findings suggest that S1P treatment induces myocyte autophagy through mTOR inhibition, leading to the attenuation of LV dysfunction after MI.


Assuntos
Lisofosfolipídeos , Esfingosina/análogos & derivados , Animais , Autofagia , Infarto do Miocárdio , Miócitos Cardíacos , Ratos , Ratos Sprague-Dawley
12.
Clin Exp Pharmacol Physiol ; 48(5): 704-716, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650189

RESUMO

Reduced nerve growth factor (NGF) is associated with cardiac sympathetic nerve denervation in heart failure (HF) which is characterized by increased oxidative stress. Apocynin is considered an antioxidant agent which inhibits NADPH oxidase activity and improves reactive oxygen species scavenging. However, it is unclear whether apocynin prevents reduced myocardial NGF, leading to improvement of cardiac function in HF. In this study, we tested the hypothesis that apocynin prevents reduced myocardial NGF, contributing to amelioration of myocardial apoptosis and failure. Rabbits with myocardial infarction (MI) or sham operation were randomly assigned to receive apocynin or placebo for 4 weeks. MI rabbits exhibited left ventricular (LV) dysfunction, and elevation in oxidative stress, as evidenced by a decreased reduced-to-oxidized glutathione ratio and an increased 4-hydroxynonenal expression, and reduction in NGF and NGF receptor tyrosine kinase A (TrKA) expression in the remote non-infarcted myocardium. Apocynin treatment ameliorated LV dysfunction, reduced oxidative stress, prevented decreases in NGF and TrKA expression and reduced cardiomyocyte apoptosis after MI. In cultured H9C2 cardiomyocytes, hypoxia or hydrogen peroxide decreased NGF expression, and apocynin normalized hypoxia-induced reduction of NGF. Recombinant NGF attenuated hypoxia-induced apoptosis. Apocynin prevented hypoxia-induced apoptosis, and the suppressive effect of apocynin on apoptosis was abolished by NGF receptor TrKA inhibitor K252a. We concluded that apocynin prevented reduced myocardial NGF, leading to attenuation of cardiomyocyte apoptosis and LV remodelling and dysfunction in HF after MI. These findings suggest that strategies to prevent NGF reduction by inhibition of oxidative stress may be of value in amelioration of LV dysfunction in HF.


Assuntos
Acetofenonas , Animais , Miocárdio , Fator de Crescimento Neural , Coelhos
13.
Reproduction ; 161(2): 205-214, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434172

RESUMO

Fibroblast growth factor 2 (FGF2), a member of FGF family, binds with FGF receptors (FGFR) to initiate biological functions in various somatic cells. However, little is known regarding the role of FGF2/FGFR on oocyte meiosis. In this study, we investigated expression patterns and functions of FGF2/FGFR during in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs). Among four FGFRs, Ffgr1 was the most abundant in COCs. The transcripts for Fgf2 and Ffgr1 in COCs increased during IVM. Ffgr1 was present in oocytes and cumulus cells, while Fgf2 was present in only cumulus cells. Treatment of COCs with the selective FGFR inhibitor SU5402 blocked oocyte meiotic progression and downregulated expression of Bmp15 and Gdf9. In contrast, supplement of FGF2 promoted oocyte meiotic progression and upregulated Bmp15 and Gdf9 expression. Inhibition of FGFR with SU5402 reduced cumulus expansion and expressions of Ptx3, Has2 and Tnfaip6. Treatment with FGF2 increased Ptx3 and Has2 expression. Inhibition of FGFR had no effect on meiotic progression of denuded oocytes (DOs). However, co-culture of DOs with COCs or supplementation with FGF2 promoted meiotic progression of DOs. Inhibition of FGF2/FGFR signaling also downregulated Ffgr1 expression, while supplemental FGF2 upregulated Fgfr1 expression. Furthermore, inhibition of FGFR in COCs interrupted the c-Mos/MAPK pathway and maturation-promoting factor (MPF), as indicated by downregulation of oocyte c-mos and Ccnb1 transcripts, respectively. Overall, this study suggests that FGF2 produced by cumulus cells, activates a FGF2/FGFR autocrine/paracrine loop within COCs to regulate cumulus expansion and oocyte meiosis. These findings reveal a novel role for FGF2/FGFR signaling during in vitro maturation of COCs.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Animais , Células do Cúmulo , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos , Oogênese
14.
Front Cell Dev Biol ; 9: 791221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004687

RESUMO

Testis is the primary organ of the male reproductive tract in mammals that plays a substantial role in spermatogenesis. Improvement of our knowledge regarding the molecular mechanisms in testicular development and spermatogenesis will be reflected in producing spermatozoa of superior fertility. Evidence showed that N6-Methyladenosine (m6A) plays a dynamic role in post-transcription gene expression regulation and is strongly associated with production traits. However, the role of m6A in bovine testis has not been investigated yet. In this study, we conducted MeRIP-Seq analysis to explore the expression profiles of the m6A and its potential mechanism underlying spermatogenesis in nine bovine testes at three developmental stages (prepuberty, puberty and postpuberty). The experimental animals with triplicate in each stage were chosen based on their semen volume and sperm motility except for the prepuberty bulls and used for testes collection. By applying MeRIP-Seq analysis, a total of 8,774 m6A peaks and 6,206 m6A genes among the studied groups were identified. All the detected peaks were found to be mainly enriched in the coding region and 3'- untranslated regions. The cross-analysis of m6A and mRNA expression exhibited 502 genes with concomitant changes in the mRNA expression and m6A modification. Notably, 30 candidate genes were located in the largest network of protein-protein interactions. Interestingly, four key node genes (PLK4, PTEN, EGR1, and PSME4) were associated with the regulation of mammal testis development and spermatogenesis. This study is the first to present a map of RNA m6A modification in bovine testes at distinct ages, and provides new insights into m6A topology and related molecular mechanisms underlying bovine spermatogenesis, and establishes a basis for further studies on spermatogenesis in mammals.

15.
Dev Comp Immunol ; 103: 103529, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669309

RESUMO

The myeloid differentiation protein 2 (MD2)-related lipid-recognition (ML) proteins display diverse biological functions in host immunity and lipid metabolism by interacting with different lipids. Human MD2, an indispensable accessory protein in TLR4 signaling pathway, specifically recognizes lipopolysaccharides (LPS), thereby leading to the activation of TLR4 signaling pathway to produce many effectors that participate in inflammatory and immuneresponses against Gram-negative bacteria. Toll and immune deficiency (IMD) pathways are first characterized in Drosophila and are reportedly present in crustaceans, but the recognition and activation mechanism of these signaling pathways in crustaceans remains unclear. In the present study, a novel ML protein was characterized in mud crab (Scylla paramamosain) and designated as SpMD2. The complete SpMD2 cDNA sequence is 1114 bp long with a 465 bp open reading frame; it encodes a protein that contains 154 amino acids (aa). In the deduced protein, a signal peptide (1-21 aa residues) and a ML domain (43-151 aa residues) were predicted. SpMD2 shared a similar three-dimensional structure and a close evolutionary relationship with human MD2. SpMD2 was highly expressed in gills, hemocytes, intestine, and hepatopancreas and was upregulated in gills and hemocytes after challenges with bacteria, thereby suggesting its involvement in antibacterial defense. Western blot assay showed that SpMD2 possesses strong binding activities to different bacteria and two fungi. ELISA demonstrated that SpMD2 exhibits binding abilities to LPS, lipid A, peptidoglycan (PGN), and lipoteichoic acid (LTA). Its binding ability to LPS and lipid A were stronger than to PGN or LTA, implying that SpMD2 was an important LPS-binding protein in mud crab. Bacterial clearance assay revealed that the pre-incubation of Vibrio parahemolyticus with SpMD2 facilitates bacterial clearance in vivo and that knockdown of SpMD2 dramatically suppresses the bacterial clearance and decreases the expression of several antimicrobial peptides (AMPs). Furthermore, SpMD2 overexpression could enhance the promoter activity of SpALF2. These results revealed that SpMD2 affects bacterial clearance by regulating AMPs. Thus, by binding to LPS and by regulating AMPs, SpMD2 may function as a potential receptor, which is involved in the recognition and activation of a certain immune signaling pathway against Gram-negative bacteria. This study provides new insights into the diverse functions of ML proteins and into the antibacterial mechanisms of crustaceans.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Receptores de Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Artrópodes/genética , Receptores de Lipopolissacarídeos/genética , Antígeno 96 de Linfócito/genética , Vibrioses/imunologia , Vibrioses/veterinária , Vibrio parahaemolyticus/imunologia
16.
Fish Shellfish Immunol ; 97: 257-267, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31843702

RESUMO

Lysin motif (LysM)-containing proteins function as pattern-recognition receptors in plants to recognize different N-acetylglucosamine-containing ligands, thereby triggering specific defense responses against pathogens. However, the biological functions of these proteins in animals remain unclear. In this study, we characterized a novel LysM protein, designated as SpLysMD3, in mud crab Scylla paramamosain. The cDNA sequence of SpLysMD3 had 1058 bp with an open reading frame of 840 bp encoding a protein with 279 amino acid residues. The deduced protein contained a LysM domain and a transmembrane region. SpLysMD3 was highly expressed in gills, intestine, muscle, and hemocytes and upregulated after challenges with bacteria, suggesting that it may be involved in antibacterial defense. Binding assay showed that SpLysMD3 possessed specific binding activities to all tested microorganisms as well as bacterial cell wall components lipopolysaccharide (LPS) and peptidoglycan (PGN), indicating that SpLysMD3 was an important LPS- and PGN-binding protein in mud crab. Bacterial clearance assay revealed that coating bacteria with SpLysMD3 accelerated bacterial clearance in vivo. The promotion of bacterial clearance by SpLysMD3 was further determined by using SpLysMD3-silenced crabs injected with S. aureus or V. parahemolyticus. Silencing SpLysMD3 dramatically suppressed the bacterial clearance. Meanwhile, knockdown of SpLysMD3 also severely impaired the expression of a specific set of antimicrobial peptides (AMPs); moreover, SpLysMD3 overexpression can enhance the promoter activity of SpALF2. These results suggested that SpLysMD3 affected bacterial clearance by regulating AMPs. Collectively, all the results demonstrated that SpLysMD3 may function as a potential receptor involved in innate immunity by binding to LPS and PGN and by regulating AMPs to eliminate invading pathogen. This study provided new insights into the biological functions of LysM proteins in animals and the mechanisms underlying the antibacterial activity of crustaceans.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Filogenia , Staphylococcus aureus/fisiologia , Vibrio parahaemolyticus/fisiologia
17.
Biomed Res Int ; 2019: 7167525, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863780

RESUMO

Effects of in ovo injection of Q10 on hatchability, performance (feed intake (FI), body weight gain (BWG), feed/gain ratio (F/G)) traits, and immune status of Ross × Ross 308 broiler chicks, hatched from eggs laid by a 38-week-old breeder flock, were determined through 42 days after hatch. Eggs containing live embryos were injected in the amnion with 0.1 and 0.2 mL Q10 solution on day 18 of incubation. Two controls groups were included as sham and/or as an uninjected group. At 28 and 42 days of age, performance traits, serum enzyme activity, weights of immune organs, and serum antibody titer of viral diseases were determined. Results were shown that hatchability % increased by Q10 on average of 6.54% (P≤0.025) and body weight/egg weight after hatching increased up to 4.74% (P≤0.002), compared with uninjected and sham controls. Injection of Q10 at different levels led to significant increases (P≤0.001) in performance traits all over the rearing period (P<0.05). Weight of immune organs significantly improved compared to uninjected and sham controls (P<0.05). In addition, serum antibody titers of viral diseases as well as serum enzyme activity of AST, ALT, CAT, and SOD were significantly changed by Q10 treated groups than controls (P≤0.01). In conclusion, in ovo injection of Q10 at levels of 0.1 and 0.2 mL led to significant increases in hatchability%, internal egg characteristics, and performance parameters as well as serum enzyme activity, weight of immune organs, and serum antibody titer of ND, AI, and IBD diseases.


Assuntos
Galinhas/crescimento & desenvolvimento , Ovos , Óvulo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Injeções , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Óvulo/crescimento & desenvolvimento , Ubiquinona/administração & dosagem
18.
Dalton Trans ; 47(30): 10124-10129, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30003204

RESUMO

Four unprecedented decanuclear heterometallic [Ln2CoII4CoIII4] clusters based on a diethanolamine ligand (H2dea), namely [Eu2CoII4CoIII4(dea)8(HCOO)4(OH)2(Cl)2(CH3OH)2]Cl2·4CH3OH·2H2O (1), [Gd2CoII4CoIII4(dea)8(HCOO)4(OH)2(Cl)2(CH3OH)2]Cl2·4CH3OH·2H2O (2), [Tb2CoII4CoIII4(dea)8(HCOO)4(OH)2(Cl)2(CH3OH)2]Cl2·2CH3OH·4H2O (3) and [Dy2CoII4CoIII4(dea)8(HCOO)4(OH)2(Cl)2(CH3OH)2]Cl2·2CH3OH·4H2O (4) were synthesized through a facile solution method. Single-crystal X-ray diffraction analyses reveal that complexes 1-4 consist of a [Ln2CoII4CoIII4] core, which is constructed by bridging a quasi-double cuboidal [Ln2CoII2CoIII2] core with two [CoIICoIII] units. Electrospray ionization mass spectrometry (ESI-MS) using methanol solution reveals that complexes 1-4 are stable in the solution, and the clusters undergo three different substitution reactions (Cl- replaced by OH-, OH- replaced by CH3O- and HCOO- replaced by OH-/CH3O-) at the same time in the ionization state. Magnetic susceptibilities reveal ferromagnetic couplings within complexes 3 and 4, and the magnetocaloric effect (MCE) for 2 was also evaluated and the maximum entropy change (-ΔSm) value reaches 16.3 J kg-1 K-1 at about 3 K and 5 T.

19.
Microb Biotechnol ; 11(1): 248-256, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205848

RESUMO

DNA vaccines, the third-generation vaccines, were extensively studied. The attenuated Salmonella choleraesuis (S. choleraesuis) was widely focused as a carrier to deliver DNA vaccines in the chromosome-plasmid balanced-lethal system. The efficacy of inhibin DNA vaccine delivered by attenuated S. choleraesuis was proved in mice and cows in our previous studies. In this study, the efficacy of inhibin DNA vaccine was confirmed in rhesus monkeys. To further study the biodistribution and safety, the mice were immunized under laboratory conditions. The results of the rhesus monkeys showed the plasma IgA and IgG titres against inhibin were elevated, and the oestradiol (E2 ) and progesterone (P4 ) levels were increased with immunizing inhibin DNA vaccine. The biodistribution and safety assessment displayed the body weight, pathological change and haematology indexes where there is no significant difference between vaccinated mice and control. And the genomics analysis showed there was no integration of the inhibin gene into the mouse genome 2 months after immunization. This study indicated the inhibin DNA vaccine delivered by attenuated S. choleraesuis was safe. And this vaccine was a potential means to improve their reproductive traits in primates and other animals.


Assuntos
Portadores de Fármacos , Imunoterapia/métodos , Infertilidade/terapia , Inibinas/imunologia , Salmonella arizonae/genética , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Animais , Estradiol/sangue , Imunidade Humoral , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoterapia/efeitos adversos , Inibinas/genética , Macaca mulatta , Camundongos , Progesterona/sangue , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacocinética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/farmacocinética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
20.
Mol Reprod Dev ; 84(11): 1140-1154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28805353

RESUMO

Granulosa cells (GCs) play an important role in ovarian follicle growth, development, and follicular atresia. In the present study, we investigated the effects of Melatonin on bovine GCs, and asked if MTNR1A was involved in their response to this indole hormone. Our results indicated that Melatonin inhibited GC apoptosis by up-regulating the expression of BCL2, BCL-XL, GPX4, and SOD1, and down-regulating the expression of BAX, CASP3, and TP53. Moreover, Melatonin modulated bovine GC function by decreasing the expression of INHA, INHBB, FSHR, and TGFBR3, and the abundance of Inhibin ß and Activin B, while increasing the expression of LHR, INHBA, and secretion of progesterone by GCs. In contrast, knockdown of MTNR1A significantly increased the expression of BAX, CASP3, TP53, INHA, FSHR, and TGFBR3, as well as Inhibin ß abundance, while decreasing the expression of BCL2, GPX4, SOD1, and LHR, and production of progesterone and estradiol; no effect was observed on the expression of BCL-XL, INHBA, or INHBB. These results suggest that Melatonin and MTNR1A play an important role in modulating bovine GC function by regulating cellular progression, apoptosis, hormones secretion, and reproduction-related genes. Furthermore, altered expression of MTNR1A could affect how bovine GCs respond to Melatonin.


Assuntos
Apoptose/efeitos dos fármacos , Células da Granulosa/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/metabolismo , Animais , Bovinos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/biossíntese , Células da Granulosa/citologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Receptores do LH/biossíntese , Superóxido Dismutase-1/biossíntese , Proteína bcl-X/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...